
LIS Developer’s Guide

Submitted under Task Agreement GSFC-CT-2

Cooperative Agreement Notice (CAN) CAN-00OES-01

Increasing Interoperability and Performance of

Grand Challenge Applications in the Earth, Space, Life, and

Microgravity Sciences

December 2003

Version 2.3

History:
Revision Summary of Changes Date
2.3 LIS 2.3 code release December 19, 2003

NASA Goddard Space Flight Center,
Greenbelt, MD 20771

1

Contents

1 Introduction 3

2 Coding and Documentation Conventions 4
2.1 Coding conventions . 4
2.2 Documentation conventions . 4

3 Customizable Features in LIS 7
3.1 Function Tables . 7

4 Customizing LIS to use new land surface models 9

5 Customizing LIS to use new forcing schemes 13

6 Customizing LIS for a new domain 16

7 Customizing LIS for Input data 19
7.1 Soils data . 19
7.2 Vegetation data . 19
7.3 Meterorological data . 20

2

1 Introduction

The primary goal of the LIS project is to build a system that is capable of
performing high resolution land surface modeling at high performance using
scalable computing technologies. The LIS software system consists of a number
of components: (1) LIS driver: the core software that integrates the use of land
surface models, data management techniques, and high performance computing.
(2) community land surface models such as CLM [2], Noah [3], and VIC [5], and
(3) Visualization tools. One of the important design goals of LIS is to develop an
interoperable system to interface and interoperate with land surface modeling
community and other earth system models. LIS is designed using an object
oriented, componet-based style. The adaptable interfaces in LIS can be used
by the developers to ease the cost of development and foster rapid prototyping
and development of applications.

This document describes some of the interoperable features in LIS and how
to use/extend them. The following sections describe the general development
and documentation practices recommended for using and extending LIS soft-
ware, followed by the guidelines for using the extensible features in LIS for
customization and improved functionality.

3

2 Coding and Documentation Conventions

This section describes some of the coding and documentation conventions [1]
that are helpful for developers of LIS.

2.1 Coding conventions

LIS considers F90 and C as implementation languages. Different compilers often
employ various levels of strictness in parsing source files based on extensions such
as f77, F, f, and f90. This makes the task of porting code to different platforms
a hard process. Therefore, fortran additions and contributions to LIS code are
expected to be in F90 format. Some of the style guidelines followed in LIS are
as follows:

• Preprocessor: C preprocessor (cpp) is used where ever the use of a lan-
guage preprocessor is required. The fortran compiler is assumed to have
the ability to run the preprocessor as part of the compilation process. The
preprocessing tokens are written in uppercase to distinguish them from the
Fortran code.

• Loops: All fortran loops in fortran are structured using do-enddo con-
structs as opposed to numbered loops.

• Indentation: Code with nested if blocks and do loops are expected to be
indented for readability.

• Modules: Modules must be named the same as the file in which they reside.
This is enforced due to the fact that make programs build dependencies
based on file names.

• Implicit none: All variables in different modules should be explicitly typed
by the use of “implicit none” statement.

2.2 Documentation conventions

LIS uses an in-line documentation system that allows users to creat both web-
browsable (html) and print-friendly(ps/pdf) documentation. Each function,
subroutine, or module includes a prologue instrumented for use with the ProTex
auto-documentation script [4]. The following examples describe the documen-
tation templates used in LIS.

Templates for routines that are not internal to modules.

!---
! NASA/GSFC Land Information Systems LIS 2.3
!---
!BOP
!
! !ROUTINE:

4

!
! !INTERFACE:
!
! !USES:
!
! !INPUT PARAMETERS:
!
! !OUTPUT PARAMETERS:
!
! !DESCRIPTION:
!
! !BUGS:
!
! !SEE ALSO:
!
! !SYSTEM ROUTINES:
!
! !FILES USED:
!
! !REVISION HISTORY:
!
! 27Jun02 Username Initial specification
!
!EOP
!---
!BOC
!EOC

Template for a module :

!---
! NASA/GSFC Land Information Systems LIS 2.3
!---
!BOP
!
! !MODULE:
!
! !PUBLIC TYPES:
!
! !PUBLIC MEMBER FUNCTIONS:
!
! !PUBLIC DATA MEMBERS:
!
! !DESCRIPTION:
!
! !REVISION HISTORY:

5

!
! 27Jun02 Username Initial specification
!
!EOP

Template for a C file:

//---
// NASA/GSFC Land Information Systems LIS 2.3
//---
//BOP
//
// !ROUTINE:
//
// !INTERFACE:
//
// !USES:
//
// !INPUT PARAMETERS:
//
// !OUTPUT PARAMETERS:
//
// !DESCRIPTION:
//
// !BUGS:
//
// !SEE ALSO:
//
// !SYSTEM ROUTINES:
//
// !FILES USED:
//
// !REVISION HISTORY:
//
// 27Jun02 Username Initial specification
//
//EOP
//---
//BOC
//EOC

6

3 Customizable Features in LIS

The LIS driver is designed with extensible interfaces for facilitating easy in-
corporation of new features into LIS. The LIS driver uses advanced features of
Fortran 90 programming language, which are especially suitable for object ori-
ented programming. The object oriented style of design adopted in LIS enables
the driver to provide well defined interfaces or “plug points” for enabling rapid
prototyping and development of new features and applications into LIS.

The LIS driver includes a number of functional extensions including:

• land surface model: Interfaces for adding new land surface models.

• base forcing: Interfaces for adding new model forcing schemes.

• observed forcing: Interfaces for adding observational forcing products.

• domain: Using a user specified domain or a subdomain of interest.

• parameters: Specifying custom defined datasets.

3.1 Function Tables

The modules in LIS are constructed using a component-based design, with each
module/component representing a program segment that is functionally related.
The customizable interfaces in LIS are designed using a number of virtual func-
tion tables and the actual delegation of the calls are done at runtime by resolving
the function names from the table. C language allows the capability to store
functions, table them, and pass them as arguments. F90 allows passing of func-
tions as arguments. By combining these features of both languages, LIS uses a
complete set of operations with function pointers.

Figure 1 illustrates how the function tables work in LIS. A function is stored
in the table typically by a register function, that simply stores the pointer to
the function at the specified index. When the function needs to be accessed,
a generic call is made which resolves into a specific call depending on the in-
dex specified. This type of implementation helps in defining generic calls in
the driver and to include only the components of interest while compiling and
building the executable. For simplicity, throughout this document the word
“registry” is used to refer to a function table.

The LIS.2.3 source code available from the LIS website contains a number of
subdirectories, which are organized as components. The top level organization
of the source (src) is as follows:

7

Directory Name Synopsis
driver LIS driver routines
baseforcing Routines to call model forcing methods
obsprecips Routines to call observed precipitation products
obsrads Routines to call observed radiation products
forcing-plugin Routines that define registries for forcing schemes
lsm-plugin Routines that defines registries for land surface models
lsms Contains land surface model codes

1 f1()

Function Table

Index Function

2 f2()

. .
 .

.

. .
 .

.

Register step

call register(1,f1)
call register(2,f2)

Retrieval step

call retrieve (1)

call retrieve (2)

returns f1()

returns f2()

Figure 1: Example of a function table implementation

8

4 Customizing LIS to use new land surface mod-
els

The lsm-plugin directory contains the lsm pluginMod module that can be used to
customize and define land surface models in LIS. The lsm pluginMod contains
a lsm plugin method that defines a number or registries to capture the basic
offline operations of a land surface model. The registries can be used to define
functions to perform the following tasks:

• initialization
Definition of land surface model variables, allocation of memory, reading
runtime parameters, etc.

• setup
Initialization of land surface model parameters.

• dynamic setup
Routines to initialize or update time dependent parameters.

• run
Routines to execute land surface model on a single gridcell for a single
timestep.

• write restart
Routines to write restart files

• read restart
Routines to read restart files

• output
Routines to write output

• transfer of forcing data to model tiles
Routines that provides an array of forcing variables for each gricell.

The following example shows how the registry functions are defined for Noah
land surface model.

call registerlsmini(1,noah_varder_ini)
call registerlsmsetup(1,noah_setup)
call registerlsmdynsetup(1,noah_dynsetup)
call registerlsmrun(1,noah_main)
call registerlsmrestart(1,noahrst)
call registerlsmoutput(1,noah_output)
call registerlsmf2t(1,noah_f2t)
call registerlsmwrst(1,noah_writerst)

9

The registry functions defined for noah are:
noah varder ini Initialization for Noah
noah setup Sets up Noah’s parameters
noah dynsetup Sets up Noah’s time dependant parameters
noah main Runs the Noah model on a single gridcell at a timestep
noahrst Reads the Noah restart files
noah output Writes output of Noah runs
noah writerestart Writes Noah’s restart files
noah f2t Transfers forcing data to Noah model tiles

The index used for Noah’s functions in this case is 1. The index needs to be
the same for all registry defintions for a particular model. The user, however,
can define any integer value as the index chosen for a land surface model. The
corresponding index needs to be specified in the lis card file (LIS%d%LSM) i.e., if
Noah model is used, LIS%d%LSM should be assigned a value of 1.

The following code segment shows an example of defining two different land
models (CLM and Noah) to be included in the LIS executable. The same
procedure can be extended to define more models, or customize LIS to use only
the models of interest.

call registerlsmini(1,noah_varder_ini)
call registerlsmini(2,clm_varder_ini)

call registerlsmsetup(1,noah_setup)
call registerlsmsetup(2,clm2_setup)

call registerlsmdynsetup(1,noah_dynsetup)
call registerlsmdynsetup(2,clm2_dynsetup)

call registerlsmrun(1,noah_main)
call registerlsmrun(2,driver)

call registerlsmrestart(1,noahrst)
call registerlsmrestart(2,clm2_restart)

call registerlsmoutput(1,noah_output)
call registerlsmoutput(2,clm2_output)

call registerlsmf2t(1,noah_f2t)
call registerlsmf2t(2,atmdrv)

call registerlsmwrst(1,noah_writerst)
call registerlsmwrst(2,clm2wrst)

The runtime specific parameters for a land surface model can be read in
at runtime through the lis card file. The user needs to specify a customized

10

namelist and provide routines for reading the same. For Noah runs, the section
of the lis card file contains a namelist segment such as:

&noah
noahdrv%WRITEINTN = 3
noahdrv%NOAH_RFILE = "noah.rst"
noahdrv%NOAH_MGFILE = "/X6RAID/MODIS-0.25/"
noahdrv%NOAH_ALBFILE = "/X6RAID/MODIS-0.25/"
noahdrv%NOAH_VFILE = "BCS/noah_parms/noah.vegparms.txt"
noahdrv%NOAH_SFILE = "BCS/noah_parms/noah.soilparms.txt"
noahdrv%NOAH_MXSNAL = "/X6RAID/MODIS-0.25/maxsnalb.bfsa"
noahdrv%NOAH_TBOT = "/X6RAID/MODIS-0.25/tbot.bfsa"
noahdrv%NOAH_ISM = 0.30
noahdrv%NOAH_IT = 290.0
noahdrv%NOAH_NVEGP = 7
noahdrv%NOAH_NSOILP = 10
/

The namelist specifies variables such as locations of parameter files, output
writing intervals, initial conditions, etc. The routine to read these variables
are typically done during initialization of the land surface model. The program
segment for Noah is shown below as an example. For explanation of other
routines, please refer to the source code documentation.

!--
! Reads the Noah name list
!--
if(masterproc) then

call readnoahcrd(noahdrv)
endif

!--
! Defines the derived types for MPI, and broadcasts the
! namelist variables to all processors. This step can be
! skipped if using a sequential execution.
!--

call def_noahpar_struct
call MPI_BCAST(noahdrv, 1, MPI_NOAHDRV_STRUCT, 0, &

MPI_COMM_WORLD, ierr)
!---
! Allocates Memory for Noah variables
!---

if(masterproc) then
allocate(noah(nch))

else
allocate(noah(di_array(iam)))

endif

11

The src/driver directory contains a number of modules that provides helpful
variables that may be required while defining land surface model specific rou-
tines. Some of the useful modules and the variable provided by them are listed
below. For more details, please refer to the source code documentation.

Module name Functions
time manager Variables and routines for time management
lisdrf module grid : Vector representation of the

running domain grid
tile : Vector representation of the running domain tiles
gindex : Mapping of the running domain grid to the
corresponding 2-D grid

grid spmdMod Variables and routines that define domain
decomposition of the vector grid space

tile spmdMod Variables and routines that define domain
decomposition of the vector tile space

def ipMod Variables and routines that are required to
carry out spatial interpolation of scalar data

12

5 Customizing LIS to use new forcing schemes

The boundary conditions describing the (upper) atmospheric fluxes are known as
“forcings”. LIS makes use of model derived data as well as satellite and ground-
based observational data as forcings. The land surface models are typically
run using model derived data. The observational data is used to overwrite the
model derived data, whenever they are available. LIS driver provides interfaces
to incorporate model derived (base) forcing schemes as well as observational
(currently for radiation and precipitation products) forcing schemes.

The forcing-plugin directory contains modules baseforcing pluginMod, pre-
cipforcing pluginMod, and radfocing pluginMod, that can be used to customize
and define base forcing schemes, observed precipitation forcing schemes, and
observed radiation forcing schemes, respectively. These modules provide plugin
routines baseforcing plugin, precipforcing plugin, and radforcing plugin, respec-
tively.

baseforcing module provides registries to define functions to perform the fol-
lowing tasks.

• definition of native domain
Routines to define the native domain of the forcing data, read runtime
specific parameters through a namelist, etc.

• retrieval of forcing data
Routines to retrieve the forcing data, and interpolate them.

• temporal interpolation
Routines to interpolate data temporally.

The following code segment shows how two baseforcing schemes are included
in LIS.

call registerdefnat(1,defnatgdas)
call registerdefnat(2,defnatgeos)

call registerget(1,getgdas)
call registerget(2,getgeos)

call registertimeinterp(1,time_interp_gdas)
call registertimeinterp(2,time_interp_geos)

Similar to the case in lsm pluginMod, the indices used in the registries need
to be consistent for a particular scheme. In the example shown above, GDAS
forcing scheme is assigned index 1 and GEOS scheme is assigned 2. These
indices are arbitrary, but the indices used in the card file (LIS%d%FORCE) should
reflect the ones defined in the registry. i.e., if GEOS forcing scheme is to be
used, LIS%d%FORCE should be assigned a value of 2.

The runtime specific parameters for a forcing scheme can be specified at run-
time through the lis card file. The user needs to specify a customized namelist

13

and provide routines for reading the same. For GEOS runs, the section of the
lis card file contains a namelist segment such as:

&geos
geosdrv%GEOSDIR = "/X6RAID/DATA/GEOS/BEST_LK"
geosdrv%NROLD = 181
geosdrv%NCOLD = 360
geosdrv%NMIF = 13
/

The namelist specifies variables such as locations of forcings files, the native
domain sizes, the number of variables in each file, etc. The routine to read
these parameter is done typically while defining the native domain parameters
of the forcing scheme. A sample routine for GEOS forcing scheme is shown
below.

!--
! Reads the GEOS name list
!--

call readgeoscrd(geosdrv)
!--
! Defines the native GEOS domain as a kgds array
!--

kgdsi(1) = 0
kgdsi(2) = geosdrv%ncold
kgdsi(3) = geosdrv%nrold
kgdsi(4) = -90000
kgdsi(7) = 90000
kgdsi(5) = -180000
kgdsi(6) = 128
kgdsi(8) = 179000
kgdsi(9) = 1000
kgdsi(10) = 1000
kgdsi(20) = 255
mi = geosdrv%ncold*geosdrv%nrold

precipforcing module provides registries to define functions to perform the
following tasks.

• definition of native domain
Routines to define the native domain of the forcing data, read runtime
specific parameters through a namelist, etc.

• retrieval of forcing data
Routines to retrieve forcing data and interpolate them.

The following code segment shows how the CMAP precipitation scheme is
included in LIS.

14

call registerdefnatpcp(4,defnatcmap)
call registerpget(4,getcmap)

The indexing scheme is similar to the cases described above. In this case,
the CMAP scheme is assigned an index of 4. LIS%f%GPCPSRC in the card file
should correspond to the indices defined in the registries. A value of 0 indicates
that no observed precipitation scheme will be employed.

The customized namelist section for CMAP is shown below.

&cmap
cmapdrv%CMAPDIR = "./input/CMAP"
cmapdrv%NROLD = 181
cmapdrv%NCOLD = 360
/

The namelist specifies variables such as locations of forcings files, the native
domain sizes, etc. The routine to read these parameter is done typically while
defining the native domain parameters, similar to the base forcing case.

The design of radforcing module is similar to the cases described above. The
registry functions for this module are:

• definition of native domain
Routines to define the native domain.

• retrieval of forcing data
Routines to retrieve and interpolate data.

• Interpolate data in time
Temporallly interpolate data.

An example of using AGRMET observed radiation scheme is shown below.

call registerrget(1,getgrad)
call registerdefnatrad(1,defnatagrmet)
call registerrti(1,time_interp_agrmet)

The indices defined for observed radiation schemes correspond to the LIS%f%RADSRC
in the card file. The value is defined to be 0 if no observed radiation schemes
are used.

As mentioned earlier, the modules in src/driver can be used in defining
routines needed for defining a forcing scheme in LIS. Please refer to the source
code documentation for details.

15

6 Customizing LIS for a new domain

The LIS driver is designed to be domain independent. The parameters used to
define the domain are designed to be runtime options. The user is required to
specify two different types of domain information

• Running domain
The domain over which land surface simulations are carried out.

• Data domain
The domain over which data sets are defined. Currently it is assumed
that all data sets are defined in the same domain. In future, support for
defining domain information for each dataset will be provided.

The parameters used to define a domain are adopted from the design used in
grib decoding programs such as w3fi63 [6]. The domain namelist in the lis card
file specifies an array called kgds. Indices from 0 to 20 in the kgds array define
the running domain, and indices from 41 onwards define the data domain. The
description of kgds array are shown below for the running domain. The data
domain can be defined in a similar way. The following sections describe the
kgds array used in the card file for the running domain.

Variable Description
LIS%d%kgds(1) 0 - Latitude/Longitude

1 - Mercator cylindrical
3 - Lambert conformal conical
4 - Gaussian cylindrical
5 - Polar stereographic azimuthal

For latitude, longitude grids,
LIS%d%kgds(2) Number of points on a latitude circle
LIS%d%kgds(3) Number of points on a longitude circle
LIS%d%kgds(4) Latitude of origin
LIS%d%kgds(5) Longitude of origin
LIS%d%kgds(6) Resolution flag
LIS%d%kgds(7) Latitude of extreme point
LIS%d%kgds(8) Longitude of extreme point
LIS%d%kgds(9) Latitudinal directional increment
LIS%d%kgds(10) Longitudinal directional increment
LIS%d%kgds(11) Scanning mode flag

16

For Mercator grids,
LIS%d%kgds(2) Number of points on a latitude circle
LIS%d%kgds(3) Number of points on a longitude circle
LIS%d%kgds(4) Latitude of origin
LIS%d%kgds(5) Longitude of origin
LIS%d%kgds(6) Resolution flag
LIS%d%kgds(7) Latitude of extreme point
LIS%d%kgds(8) Longitude of extreme point
LIS%d%kgds(9) Latitude of projection intersection
LIS%d%kgds(10) Reserved
LIS%d%kgds(11) Scanning mode flag
LIS%d%kgds(12) Longditudinal directional increment
LIS%d%kgds(13) Latitudinal directional increment

For Lambert conformal grids,
LIS%d%kgds(2) Number of points along x-axis
LIS%d%kgds(3) Number of points along y-axis
LIS%d%kgds(4) Latitude of origin
LIS%d%kgds(5) Longitude of origin
LIS%d%kgds(6) Resolution flag
LIS%d%kgds(7) Orientation of grid
LIS%d%kgds(8) x-direction increment
LIS%d%kgds(9) y-direction increment
LIS%d%kgds(10) projection center flag
LIS%d%kgds(11) Scanning mode flag
LIS%d%kgds(12) First lat from pole of secant cone inter
LIS%d%kgds(13) Second lat from pole of secant cone inter

For Gaussian grids,
LIS%d%kgds(2) Number of points on a latitude circle
LIS%d%kgds(3) Number of points on a longitude circle
LIS%d%kgds(4) Latitude of origin
LIS%d%kgds(5) Longitude of origin
LIS%d%kgds(6) Resolution flag
LIS%d%kgds(7) Latitude of extreme point
LIS%d%kgds(8) Longitude of extreme point
LIS%d%kgds(9) Latitudinal direction of increment
LIS%d%kgds(10) Number of circles from pole to equator
LIS%d%kgds(11) Scanning mode flag
LIS%d%kgds(12) Number of vertical coord parameters
LIS%d%kgds(13) Octet number of list of vert. coord. parameters

or location of the list of number of points in
each row (if no vert. coords are present)
255 if neither are present

17

For polar stereographic grids,
LIS%d%kgds(2) Number of points on a latitude circle
LIS%d%kgds(3) Number of points on a longitude circle
LIS%d%kgds(4) Latitude of origin
LIS%d%kgds(5) Longitude of origin
LIS%d%kgds(6) Resolution flag
LIS%d%kgds(7) Grid orientation
LIS%d%kgds(8) x direction increment
LIS%d%kgds(9) y direction increment
LIS%d%kgds(10) projection center flag
LIS%d%kgds(11) Scanning mode flag

The LIS driver currently supports latitude/longitude and gaussian grids.
The support for other types of grids are in development. The user is expected to
provide parameter data that is consistent with the domain specified at runtime.
The details of specifying parameter data is explained in the next section.

18

7 Customizing LIS for Input data

LIS allows the user to specify a number of input data sets at runtime through the
card file. These data sets are expected to be consistent with the type of domain
and resolution specified. Land model specific parameter data are expected to
be specified in the namelists specific to each land model. The input data for
models in LIS are divided into three categories

• Soils data : static

• Vegetation data : some static and some dynamic

• Meterological data : at different frequencies

The soil and vegetation data are used to specify the characteristics of the land
surface and the meterological data to provide forcing at the upper boundary
of the land surface. A detailed description of parameter data used in LIS are
available at http://lis.gsfc.nasa.gov/Data/index.shtml.

7.1 Soils data

LIS provides a number of overlapping data sets for specifying soil hydraulic
properties: sand, clay, silt, and organic texture fractions, porosity maps, etc.

bfsa - binary, sequential access,
txt - text
bfda - binary, direct acess
Data file Description Format
LIS%p%SAFILE Sand fraction map file bfsa
LIS%p%CLFILE Clay fraction map file bfsa
LIS%p%ISCFILE Soil color map file bfsa
LIS%p%ELEVFILE Elevation difference file bfsa

Some of the model specific parameter data are specified below:

noahdrv%noah sfile Noah soil parameter file txt
vicdrv%vic sfile VIC soil parameter file txt

7.2 Vegetation data

LIS uses a number of files to specify both static and time-varying vegetation
properties. Some of the files are :

19

http://lis.gsfc.nasa.gov/Data/index.shtml

LIS%p%MFILE Land/Water map file for modeling bfsa
LIS%p%VFILE Vegetation classification map file bfsa
LIS%p%AVHRRDIR Location of AVHRR-based LAI/SAI files bfda
LIS%p%MODISDIR Location of MODIS-based LAI/SAI files bfda

CLM

clmdrv%clm2 vfile CLM mapping from UMD to plant functional types txt

Noah

noahdrv%noah mgfile Location of monthly veg. greenness fraction bfsa
noahdrv%noah albfile Location of quarterly snow free albedo bfsa
noahdrv%noah vfile Noah static vegetation parameter file txt
noahdrv%noah mxsnal Maximum snow free albedo bfsa
noahdrv%noah tbot Bottom temperature bfsa

VIC

vicdrv%vic veglibfile VIC vegetation parameter file txt

7.3 Meterorological data

LIS includes a number of forcing schemes, both model-derived as well as obser-
vation based. A summary of the forcing data schemes implemented in LIS are
shown below.

Forcing scheme Type Frequency
GEOS model derived 3 hourly
GDAS model derived 3 hourly
AGRMET observational (radiation) hourly
CMAP observational (precipitation) 3 hourly

Implementation of other forcing schemes are currently under development.

20

References

[1] Community climate system model, software developers guide.
http://www.ccsm.ucar.edu/csm/working−groups/Software/dev−guide/dev−guide/.

[2] Community land model. http://www.cgd.ucar.edu/tss/clm/.

[3] Noah land surface model. http://www.emc.ncep.noaa.gov/mmb/gcp/noahlsm/README−2.2.htm.

[4] Protex documentation system. http://gmao.gsfc.nasa.gov/software/protex.

[5] Variable infiltration capacity (vic) model.
http://www.hydro.washington.edu/Lettenmaier/Models/VIC/VIChome.html.

[6] W3fi63 program. http://dss.ucar.edu/datasets/ds609.1/software/mords/w3fi63.f.

21

	Introduction
	Coding and Documentation Conventions
	Coding conventions
	Documentation conventions

	Customizable Features in LIS
	Function Tables

	Customizing LIS to use new land surface models
	Customizing LIS to use new forcing schemes
	Customizing LIS for a new domain
	Customizing LIS for Input data
	Soils data
	Vegetation data
	Meterorological data

